How to Write a Scientific Paper: Practical Guidelines

Copyright © 2014 International Federation of Clinical Chemistry and Laboratory Medicine (IFCC). All rights reserved.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Precise, accurate and clear writing is essential for communicating in health sciences, as publication is an important component in the university criteria for academic promotion and in obtaining funding to support research. In spite of this, the development of writing skills is a subject infrequently included in the curricula of faculties of medicine and allied health sciences. Therefore clinical investigators require tools to fill this gap. The present paper presents a brief historical background to medical publication and practical guidelines for writing scientific papers for acceptance in good journals.

Key words: guidelines, scientific writing

INTRODUCTION

A scientific paper is the formal lasting record of a research process. It is meant to document research protocols, methods, results and conclusions derived from an initial working hypothesis. The first medical accounts date back to antiquity. Imhotep, Pharaoh of the 3 rd Dynasty, could be considered the founder of ancient Egyptian medicine as he has been credited with being the original author of what is now known as the Edwin Smith Papyrus ( Figure 1 ). The Papyrus, by giving some details on cures and anatomical observations, sets the basis of the examination, diagnosis, treatment, and prognosis of numerous diseases. Closer to the Common Era, in 460 BCE, Hippocrates wrote 70 books on medicine. In 1020, the Golden age of the Muslim Culture, Ibn Sina, known as Avicenna ( Figure 2a ), recorded the Canon of medicine that was to become the most used medical text in Europe and Middle East for almost half a millennium. This was followed in the beginning of the 12 th Century bytheextensivetreatiseofMaimonides( Figure 2b ) (Moses ben Maimon) on Greek and Middle Eastern medicine. Of interest, by the end of the 11 th Century Trotula di Ruggiero, a woman physician, wrote several influential books on women’s ailment. A number of other hallmark treatises also became more accessible, thanks to the introduction of the printing press that allowed standardization of the texts. One example is the De Humani Corporis Fabrica by Vesalius which contains hundreds of illustrations of human dissection. Thomas A Lang provides an excellent concise history of scientific publications [1]. These were the days when writing and publishing scientific or philosophical works were the privilege of the few and hence there was no or little competition and no recorded peer reviewing system. Times have however changed, and contemporary scientists have to compose with an increasingly harsh competition in attracting editors and publishers attention. As an example, the number of reports and reviews on obesity and diabetes has increased from 400 to close to 4000/year and 50 to 600/year respectively over a period of 20 years ( Figure 3 ). The present article, essentially based on TA Lang’s guide for writing a scientific paper [1], will summarize the steps involved in the process of writing a scientific report and in increasing the likelihood of its acceptance.

This manuscript, written in 1600 BCE, is regarded as a copy of several earlier works ( 3000 BCE). It is part of a textbook on surgery the examination, diagnosis, treatment, and prognosis of numerous ailments. BCE: Before the Common Era.

The Edwin Smith Papyrus (≈3000 BCE)

Figure 2a Avicenna 973-1037 C.E.Figure 2b Maimonides, 1135-1204 C.E.

Avicenna and Maimonides

Orange columns: original research papers; Green columns: reviews

Annual publication load in the field of obesity and diabetes over 20 years.

Reasons for publishing are varied. One may write to achieve a post-graduate degree, to obtain funding for pursuing research or for academic promotion. While all 3 reasons are perfectly legitimate, one must ask whether they are sufficient to be considered by editors, publishers and reviewers. Why then should the scientist write? The main reason is to provide to the scientific community data based on hypotheses that are innovative and thus to advance the understanding in a specific domain. One word of caution however, is that if a set of experiments has not been done or reported, it does not mean that it should be. It may simply reflect a lack of interest in it.

DECIDING ON PUBLISHING AND TARGETING THE JOURNAL

In order to assist with the decision process, pres-ent your work orally first to colleagues in your field who may be more experienced in publishing. This step will help you in gauging whether your work is publishable and in shaping the paper.

Targeting the journal, in which you want to present your data, is also a critical step and should be done before starting to write. One hint is to look for journals that have published similar work to yours, and that aims readers most likely to be interested in your research. This will allow your article to be well read and cited. These journals are also those that you are most likely to read on a regular basis and to cite abundantly. The next step is to decide whether you submit your manuscript to a top-ranking impact factor journal or to a journal of lower prestige. Although it is tempting to test the waters, or to obtain reviewers comments, be realistic about the contribution your work provides and submit to a journal with an appropriate rank.

Do not forget that each rejection delays publication and that the basin of reviewers within your specialty is shallow. Thus repeated submission to different journals could likely result in having your work submitted for review to the same re-viewer.

DECIDING ON THE TYPE OF MANUSCRIPT

There are several types of scientific reports: observational, experimental, methodological, theoretical and review. Observational studies include 1) single-case report, 2) collective case reports on a series of patients having for example common signs and symptoms or being followed-up with similar protocols, 3) cross-sectional, 4) cohort studies, and 5) case-control studies. The latter 3 could be perceived as epidemiological studies as they may help establishing the prevalence of a condition, and identify a defined population with and without a particular condition (disease, injury, surgical complication). Experimental reports deal with research that tests a research hypothesis through an established protocol, and, in the case of health sciences, formulate plausible explanations for changes in biological systems. Methodological reports address for example advances in analytical technology, statistical methods and diagnostic approach. Theoretical reports suggest new working hypotheses and principles that have to be supported or disproved through experimental protocols. The review category can be sub-classified as narrative, systematic and meta-analytic. Narrative reviews are often broad overviews that could be biased as they are based on the personal experience of an expert relying on articles of his or her own choice. Systematic reviews and meta-analyses are based on reproducible procedures and on high quality data. Researchers systematically identify and analyze all data collected in articles that test the same working hypothesis, avoiding selection bias, and report the data in a systematic fashion. They are particularly helpful in asking important questions in the field of healthcare and are often the initial step for innovative research. Rules or guidelines in writing such report must be followed if a quality systematic review is to be published.

For clinical research trials and systematic reviews or meta-analyses, use the Consort Statement (Consolidated Standards Of Reporting Trials) and the PRISMA Statement (Preferred Reporting Items for Systematic reviews and Meta-Analyses) respectively [2,3]. This assures the editors and the reviewers that essential elements of the trials and of the reviews were tackled. It also speeds the peer review process. There are several other Statements that apply to epidemiological studies [4], non-randomized clinical trials [5], diagnostic test development (6) and genetic association studies (7). The Consortium of Laboratory Medicine Journal Editors has also published guidelines for reporting industry-sponsored laboratory research (8).

INITIAL STEPS IN THE PROCESS OF WRITING A SCIENTIFIC DOCUMENT

Literature review is the initial and essential step before starting your study and writing the scientific report based on it. In this process use multiple databases, multiple keyword combinations. It will allow you to track the latest development in your field and thus avoid you to find out that someone else has performed the study before you, and hence decrease the originality of your study. Do not forget that high-ranking research journals publish results of enough importance and interest to merit their publication.

Determining the authorship and the order of authorship, an ethical issue, is the second essential step, and is unfortunately often neglected. This step may avoid later conflicts as, despite existing guidelines, it remains a sensitive issue owing to personal biases and the internal politics of institutions. The International Committee of Medical Editors has adopted the following guidelines for the biomedical sciences (9).

“Authorship credit should be based only on: 1) Substantial contributions to the conception and design, or acquisition of data, or analysis and interpretation of data; 2) Drafting the article or revising it critically for important intellectual content; and 3) Final approval of the version to be published. Conditions 1, 2 and 3 must be all met. Acquisition of funding, the collections of data, or general supervision of the research group, by themselves, do not justify authorship.” (9,10)

The order of authorship should reflect the individual contribution to the research and to the publication, from most to least (11). The first author usually carries out the lead for the project reported. However the last author is often mistakenly perceived as the senior author. This is perpetuated from the European tradition and is discouraged. As there are divergent conventions among journals, the order of authorship order may or may not reflect the individual contributions; with the exception that the first author should be the one most responsible for the work.

WRITING EFFECTIVELY

Effective writing requires that the text helps the readers 1) understand the content and the context, 2) remember what the salient points are, 3) find the information rapidly and, 4) use or apply the information given. These cardinal qualities should be adorned with the precise usage of the language, clarity of the text, inclu-siveness of the information, and conciseness. Effective writing also means that you have to focus on the potential readers’ needs. Readers in science are informed individuals who are not passive, and who will formulate their own opinion of your writing whether or not the meaning is clear. Therefore you need to know who your audience is. The following 4 questions should help you writing a reader-based text, meaning written to meet the information needs of readers [12].

What do you assume your readers already know? In other words, which terms and concepts can you use without explanation, and which do you have to define?

What do they want to know? Readers in science will read only if they think they will learn something of value.

What do they need to know? Your text must contain all the information necessary for the reader to understand it, even if you think this information id obvious to them.

What do they think they know that is not so? Correcting misconceptions can be an important function of communication, and persuading readers to change their minds can be a challenging task.

WRITING THE SCIENTIFIC PAPER

Babbs and Tackers advice to write as much of the paper before performing the research project or experimental protocol may, at first sight, seem unexpected and counterintuitive [13], but in fact it is exactly what is being done when writing a research grant application. It will allow you to define the authorship alluded to before. The following section will briefly review the structure of the different sections of a manuscript and describe their purpose.

Reading the instructions to authors of the Journal you have decided to submit your manuscript is the first important step. They provide you with the specific requirements such as the way of listing the authors, type of abstract, word, figure or table limits and citation style. The Mulford Library of University of Toledo website contains instructions to authors for over 3000 journals (http://mulford.meduoiho.edu/instr/).

The general organization of an article follows the IMRAD format (Introduction, Methods, Results, and Discussion). These may however vary. For instance, in clinical research or epidemiology studies, the methods section will include details on the subjects included, and there will be a statement of the limitation of the study. Although conclusions may not always be part of the structure, we believe that it should, even in methodological reports.

Title page

The tile page provides essential information so that the editor, reviewers, and readers will identify the manuscript and the authors at a glance as well as enabling them to classify the field to which the article pertains.

The title page must contain the following:

The tile of the article – it is an important part of the manuscript as it is the most often read and will induce the interested readers to pursue further. Therefore the title should be precise, accurate, specific and truthful;